Prof. Dr. Torsten Wedhorn, Prof. Dr. Timo Richarz

**Time and Place**

Wednesdays, 09:50-11:30 in t.b.a.

Thursday, 11:40-13:20 in t.b.a.

Starting: 16.10.2019

**Contents**

This course is the continuation of Algebraic Geometry I. We discuss properties of morphisms of schemes (proper, finite, affine, flat, smooth, étale), derived categories and cohomology of quasi-coherent sheaves, and some applications if time permits. Prerequisites are the language of schemes and quasi-coherent sheaves as covered last term.

**Literature**

- R. Hartshorne: Algebraic Geometry, Springer GTM 52.
- R. Vakil: Foundations of algebraic geometry. Skript
- J. de Jong et. al.: The Stacks Project
- U. Goertz, T. Wedhorn: Algebraic Geometry I, Vieweg.
- Q. Liu: Algebraic Geometry and Arithmetic Curves, Oxford GTM.
- A. Grothendieck, J. Dieudonné: Éléments de géométrie algébrique.

**Exercise sheets**

- Exercise sheet 1

**Exercise session**

t.b.a.

Starting: t.b.a.

There are weekly exercise sessions accompanying the lecture. Solutions to the exercises can be handed in during the lecture on Wednesdays.

**Exam**

This is an oral exam. For further information contact one of the lecturer.