1. Torsors under Néron blowups, 11 pages, preprint Jan 2020, [arXiv].
  2. The motivic Satake equivalence (with Jakob Scholbach), 35 pages, preprint Sep 2019, [arXiv]. Submitted.
  3. Normality and Cohen-Macaulayness of Parahoric Local Models (with Thomas  J. Haines), 19 pages, preprint Mar 2019, [arXiv]. Submitted.
  4. Smoothness of Schubert varieties in twisted affine Grassmannians (with Thomas  J. Haines), 23 pages, preprint Sep 2018, [arXiv]. Submitted.
  5. The Test Function Conjecture for Local Models of Weil-restricted groups (with Thomas  J. Haines), 46 pages, preprint May 2018, [arXiv]. Submitted.
  6. The Test Function Conjecture for Parahoric Local Models (with Thomas  J. Haines), 68 pages, preprint Jan 2018, [arXiv]. Submitted.

Refereed Publications (published/accepted)

  1. The intersection motive of the moduli stack of shtukas (with Jakob Scholbach), Forum of Mathematics, Sigma 8 (2020), 1-99. [Journal][arXiv].
  2. Spaces with Gm-action, hyperbolic localization and nearby cycles, Journal of Algebraic Geometry 28 (2019), 251-289. [Journal], [arXiv].
  3. On the Iwahori Weyl group, Bulletin de la SMF 144 (2016), 117- 124. [Journal], [arXiv].
  4. Affine Grassmannians and geometric Satake equivalences, Int. Math. Res. Not. 12 (2016), 3717-3767. [Journal], [arXiv]. Here is an [Erratum].
  5. (with Xinwen Zhu) Appendix to Xinwen Zhu: The geometric Satake correspondence for ramified groups, Annales scientifiques de l’ENS 48 (2015), 409-451. [Journal], [arXiv].
  6. A new approach to the geometric Satake equivalence, Documenta Mathematica 19 (2014), 209-246. [Journal], [arXiv].
  7. Schubert varieties in twisted affine flag varieties and local models, Journal of Algebra 375 (2013), 121-147. [Journal], [arXiv].


  1. The test function conjecture for parahoric local models, [OWR 2019]
  2. The stack Bun and Hecke stacks, [OWR 2017]
  3. Affine Grassmannians and Geometric Satake Equivalences, [OWR 2014]

In Preparation

  1. On the normality of Schubert varieties: Remaining cases in positive characteristic (with Thomas  J. Haines, João N. P. Lourenço), new version of [arXiv].